Relative perfect complexes

نویسندگان

چکیده

Abstract Let $$f :X \rightarrow Y$$ f : X → Y be a morphism of concentrated schemes. We characterize f -perfect complexes $${\mathscr {E}}$$ E as those such that the functor {E}}\otimes ^{\varvec{\textsf{L}}}_X \varvec{\textsf{L}}f^*-$$ ⊗ L ∗ - preserves bounded complexes. prove, consequence, quasi-proper takes relative perfect into ones. obtain generalized version semicontinuity theorem dimension cohomology and Grauert’s base change fibers. Finally, bivariant theory Grothendieck group is developed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinants of Perfect Complexes and Euler Characteristics in Relative K0-groups

We study the K0 and K1-groups of exact and triangulated categories of perfect complexes, and we apply the results to show how determinant functors on triangulated categories can be used for the construction of Euler characteristics in relative algebraic K0-groups.

متن کامل

Oriented Euler Complexes and Signed Perfect Matchings

This paper presents “oriented pivoting systems” as an abstract framework for complementary pivoting. It gives a unified simple proof that the endpoints of complementary pivoting paths have opposite sign. A special case are the Nash equilibria of a bimatrix game at the ends of Lemke–Howson paths, which have opposite index. For Euler complexes or “oiks”, an orientation is defined which extends th...

متن کامل

Perfect discrete Morse functions on 2-complexes

A bst r ac t This paper is focused on the study of perfect discrete Morse functions on a 2-simplicial complex. These are those discrete Morse functions such that the number of critical i-simplices coincides with the i-th Betti number of the complex. In particular, we establish conditions under which a 2-complex admits a perfect discrete Morse function and conversely, we get topological properti...

متن کامل

Classifying thick subcategories of perfect complexes

Given a commutative coherent ring R, a bijective correspondence between the thick subcategories of perfect complexes Dper(R) and the Serre subcategories of finitely presented modules is established. To construct this correspondence, properties of the Ziegler and Zariski topologies on the set of (iso-classes for) indecomposable injective modules are essentially used.

متن کامل

Relative Perfect Secrecy: Universally Optimal Strategies and Channel Design

Perfect secrecy describes cases where an adversary cannot learn anything about the secret beyond its prior distribution. A classical result by Shannon shows that a necessary condition for perfect secrecy is that the adversary should not be able to eliminate any of the possible secrets. In this paper we answer the following fundamental question: What is the lowest leakage of information that can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2023

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-023-03294-7